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Abstract—Based on a simple mechanical model and an appropriate definition of generalized time,
a constitutive equation without using a yield surface is obtained for coupled plasticity and creep
behavior of materials. The hardening of the materials is separated into two factors related respec-
tively to inelastic strain range and nonproportionality. The steady creep of aluminum, copper and
nickel under wide variation of equivalent stress, and the coupled plasticity and creep of 304 stainiess
steel subjected to non-steady state of biaxial stress at elevated temperature are analyzed. The validity
of the proposed model is demonstrated by the satisfactory agreement between the experimental and
calculated results. Since the proposed model does not use a yield surface, the corresponding
numerical analysis for coupled plasticity and creep becomes greatly convenient. £ 1998 Elsevier
Science Ltd. All rights reserved.

1. INTRODUCTION

The coupled plasticity and creep behavior of the materials subjected to complex loading
histories at elevated temperature has been intensively attractive in recent years due to the
following motivations from which the new problems of load-bearing systems will mainly
arise: to increase performance, to extend life to avoid failure (Leckie, 1985). For these
purposes, materials will be required to work under more adverse operating conditions, so
that, on one hand, high-performance materials are required and, on the other hand, a
reliable estimation for operational life and failure analysis has to be performed. As its
premise, the research on more realistic constitutive models becomes more and more sig-
nificant.

Early in the 50s Besseling (1958) proposed a theory of plasticity and creep. From then
on, remarkable progress has been made in the modeling of the constitutive behavior of
materials at elevated temperature. With more and more understanding of the coupied
plasticity and creep behavior, people no longer tend to simply separate the inelastic defor-
mation into time-independent plastic and time-dependent creep parts, but treat it as a
unified irreversible one caused by thermodynamic activation. Based on this concept various
unified constitutive descriptions were proposed. Robinson (1978) proposed a constitutive
relation by extending the potential theory of plasticity to include plasticity-creep inter-
action ; Chaboche (1983), Krempl (1987), Phillips and Wu (1973) developed the descriptions
for coupled plasticity-creep on the basis of nonlinear theory of viscoplasticity ; Hart (1976),
Miller (1976), Ponter and Leckie (1976) built up their models with various kind of micro-
scopically based phenomenological constitutive theories. Freed and Walker (1993) pro-
posed a viscoplastic theory, which reduces to creep and plasticity when time-dependent and
time-independent conditions are considered, respectively. Based on the endochronic theory
of viscoplasticity (Valanis, 1980), Watanabe and Atluri (1986) suggested a definition of
intrinsic time, which leads to the evolution of the back stress that takes into account the
thermal recovery as used in the famous Bailey-Orowan’s relationship, and proved that
Chaboche’s model of viscoplasticity can be considered as one of its special cases. Wu and
Chin (1995) investigated transient creep with a unified approach based on the endochronic
constitutive equation. Murakami and Ohno (1982) proposed an elaborate creep model
based on the notion of creep-hardening surface related to the dislocation motion under
reversed stress history, which well described the creep of 304 stainless steel subjected to
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biaxial stress history. Meanwhile, systematically experimental studies on the coupled creep
and plasticity of materials subjected to multiaxial complex loading histories have also been
conducted and provided a series of significant results {see e.g. Murakami and Ohno (1986) ;
Inoue et al. (1985)].

On the other hand, the constitutive models without using a yield surface were also
developed and investigated [see ¢.g. Valanis (1980) ; Valanis and Fan (1983} ; Fan and Peng
(1991) ; Murakami and Read (1987)], in which inelasticity is considered to be a gradually
developing process which may be initially extremely small, but develops with increasing
loading. These kind of models are also significant due to following statement by Drucker
(1991) : “the more sensitive the measurements that are made, the smaller will be the diameter
of each yield surface. When a motion of a modest number of dislocations are detected as
macroscopic plastic deformation the observed yield surface will shrink to zero size.”

In this paper a unified constitutive relation without using a yield surface is proposed,
based on a simple mechanical model and an appropriate definition of generalized time, for
coupled plasticity and creep. The hardening of material is considered to consist of strain
hardening and additional cross hardening. A hardening parameter p defined in inelastic
strain space is introduced to take into account the effect of inelastic strain range; and the
additional cross-hardening caused by nonproportional loading is considered by introducing
a nonproportionality A. The proposed model is applied to the analysis of the steady creep
of some typical metals under widely distributed stress levels and, the coupled creep and
plasticity behavior of 304 stainless steel subjected to nonsteady biaxial complex loading.
The obtained results are in satisfactory agreement with the experimental observation
(Murakami and Ohno, 1986).

2. CONSTITUTIVE EQUATIONS

In the 60s Iwan (1966) considered a class of physically motivated models for the rate
independent hysteretic behavior of materials. In the past few years, Fan and Peng (1991),
Peng and Ponter (1994) proposed the constitutive equations for dissipative materials based
on a simple mechanical model shown in Fig. 1, which can be extended to the analysis of
coupled plasticity and creep. In Fig. 1, the deviatoric strain tensor e is separated into the
elastic part e® corresponding to the response of the spring E (with macroscopic elastic
modulus G) and the inelastic part e corresponding to the response of the parallel branches.
In the rth branch the dashpot-like block a, (with “‘damping” coefficient «,) and spring C,
(with stiffness C,) are used to describe the rth dissipative mechanism. Noticing that during
inelastic deformation, some part of energy may be stored in the residual stress fields on the
microlevel due to the non-homogeneous nature of the stochastic internal structure of the
material, and this part of energy is not dissipated and can be released under some condition.
In this model, this part of energy is phenemonologically assumed to be stored in C,

ol el |

Fig. 1. A simple mechanical model for thermomechanically consistent constitutive relation.
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(r=1,2,....n). Assuming the material is initially isotropic and plastically incompressible,
and in the case of isothermal and small deformation, one has the following relations

n

§ = Z Q(r), (1)
Q" = C,(T)(e'—p"), (2)
with
i e __ s 3
e =e—e _e_ﬁZG(T)’ 3

where ¢, € and e represent the inelastic, elastic and total deviatoric strains, respectively, s
the deviatoric stress, G shear modulus, T temperature, p” and Q% the rth deviatoric internal
variable and the corresponding generalized force that satisfy the following dissipation
inequality

Q":dp” =0, (r=1,...,n). 4)

The generalized force Q" is assumed to be related to the generalized irreversible flow
rate, i.e. the derivative of the corresponding internal variable p*’ with respect to z. In this
work, the following simple linear relation is adopted

d (r)
Q" =a,(T)f-§j, r=12,....n), )

in which z is generalized time. In coupled creep and plasticity the following relation (Valanis,
1980; Wu and Yip, 1980 is used

kdg dr .
S p -, d = de':de, 6)

dz? = — -
f° 9

where (T, {) can be regarded as hardening function, ¢(7, ¢, {) the function that takes into
account the effect of inelastic deformation history on the viscous deformation, and k({)
strain rate sensitivity function. Wu and Yip (1980) suggested the following expression for

k()

k(@) =1—k,In <:) (7

0

In which &, is a material parameter and £, is the reference plastic strain rate. It is seen that
k() decreases while { increases and k({) = 1 if { = {,.

In the above relations C, and a, (r =1,...,n) should be positive due to the non-
negative property of the stored energy and the dissipation [see eqn (4)]. The combination
of eqns (1), (2) and (5) produces

. CA(T)
r — i _
dQ" = C, de +< wdzt o

dT) Q", ds= ) dQ” = Cde'+dH, (%)
r=1

in which
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C= ; C, dH= ; (—a, dz+ gng) QV, 9)
_C(T) oo dC(T)
%= CAT) = —37— (10

This constitutive relation is similar to the endochronic constitutive relation without
using a yield surface (Valanis, 1980), but the dependence of the material property on
temperature is more emphasized. If 7' = 0 and k, = 0 this relation reduces to the descrip-
tion for time-independent plasticity, but in the sense that any real deformation takes time
and should usually be time-dependent, we do not intend to define artificially a pure plastic
process in the description for coupled plasticity and creep, but to extend the concept of
plasticity to time-dependent process. During creep, ds = 0 so that the inelastic strain rate
equals the total deviatoric strain rate ; during stress relaxation, de = 0, so that the change
of stress is related directly to the change of inelastic strain. For more exhaustive discussion,
readers are referred to Wu and Chin (1995).

The incremental elastic response can be obtained from eqn (3) as

G'(T)
(1) °

ds = 2G(T)(de—de') + dT. (11

The volumetric response can be expressed by

O = 3K(D)[ey —3a(THT—Ty)]

K(T)

dO'kk = 3K(T) dﬁk/‘ + |:‘[‘(,‘(‘7;5 a;

k—9<x’(T)K(T)(T—T0)~9a(T)K(T)]dT, (12)

in which T, and T denote reference and current temperature, K and « elastic volumetric
modulus and coeflicient of thermal expansion, respectively.

As an example, for isothermal creep, dT = ds = 0, one obtains the following relation
by using eqns (6), and (8)

. B:B
Cde' = Bdz, d{*=—;
C_

dz?, (13)

in which

n

B=3) 2Q". (14

r=1

Combining eqns (6) and (13), one obtains

de’_ l’(@) [1 _ (_lPl _ )} B (15)
dr g\ fC rCk®) | 18I

It is seen that creep develops in the direction of B and the rate is determined by the
applied stress and the internal structure of the material, which is phenomenologically
characterized by B, fand g. By assuming that g satisfies
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L _k@em (Bl ' [ T BT (s
= ) - lrews] 1R 1

where R, = ZC,/o;, we have

de IBI "/ lsl\ B
4 =D (fC/k(C)) exp (" Rl)uBu‘ an

This relation is able to describe the transient process of creep when the current state
of stress is changed to a new one. It is seen in eqns (1), (8), (14) and (17) that if s changes,
QY (i=1,2,...,n), the components of s vary and approach the new values related to the
new state of stress, which results in a change of B so that the creep rate varies transiently
and approaches the corresponding steady-state accordingly.

3. HARDENING FUNCTION

The hardening/softening of the materials subjected to coupled plasticity and creep is
macroscopically determined by the material properties, temperature and loading histories
such as the nonproportionality and the range of inelastic strain path, etc. [see e.g. Murakami
and Ohno (1986); Inoue et al. (1985); Freed and Walker (1993)]. Microscopically, it is
related to the substructure of materials and thermal activation and recovery [see e.g.
Murakami and Ohno (1982); Doong and Socie (1991) ; Bendersky et al. (1985)]. In our
phenomenological description, the hardening function is, therefore, assumed to take the
following multiplicatively separated form :

Sf=Nt (18

where f, is the hardening factor corresponding to proportional loading, and f, is the
additional hardening related to nonproportional loading history.

The evolution of f; is assumed to take the following simple form [see e.g. Armstrong
and Frederick (1966)]

dfi = Bd—f)dz (i=12), (19)
where d, is the saturated value of f; and f, the rate for /; to approach 4. If d, is constant eqn
(19) reduces to the expression proposed by Wu and Yang (1983).

It is known that during inelastic deformation the saturated hardening is related to the

inelastic strain range (Murakami and Ohno, 1982 ; Doong and Socie, 1991). In order to
describe this effect, Peng et al. (1992) introduced a parameter p into the d; [see eqn (19)]:

di = dy(p). | (20)

in which p is determined by the following relations

g =(e'—a)(e—a)—p’ <0, (21)
where
& =Gl +2p)uel (22)
ut e/l ifg=0 and uw:é& >0, dg/0¢
r:{ oot , | o 9l 23)
0 otherwise {|og/oe'|
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If /. [see eqn (22)] vanishes, the region defined by eqn (21) becomes identical to the non-
hardening region proposed by Ohno (1982) for cyclic plasticity, or the creep-hardening
region proposed by Murakami and Ohno (1982) for pure creep deformation.

Benallal and Marquis (1987) considered the effect of additional cross-hardening caused
by nonproportional loading by introducing a measure of nonproportionality A4 into the
parameters /3, and d, in the hardening factor £, i.e.

_ pAdZmax + (1 '—A) _ o
Qo) =P T ) = nA (= 4) 4

where ds,. denotes the saturated value of f, when 4 = 1, p the material dependent weight
parameter used to coordinate the material response corresponding to different non-
proportionalities, and

A=1-cos*0, cosl= _? :S' . (25)
e 18]

Obviously, in the case of proportional loading § is in the direction of & so that 4 = 0
(the minimum value). In the case of 90 out-of-phase loading which is regarded as the one
with the largest nonproportionality, experiment for many materials showed that 4 — 1 (the
maximum value) [see e.g. Benallal and Marquis (1987)]. This definition of 4 can also be
interpreted on the basis of dislocation motion: ¢ and $ microscopically representing the
variation of dislocation motion and the corresponding resistance, respectively, when non-
proportional loading makes the maximum shear plane rotate, the hysteresis of the resistance
will result in a phase difference between & and .

4. APPLICATION AND VERIFICATION

4.1. Material parameters and constants
The material parameters and constants involved in this model are listed as follows:

(1) G, E are the shear and Young’s moduli, respectively, which may be temperature-
dependent.

(2) C,, o; are the parameters of inelastically, in which C, may be temperature dependent,
2, 1s the ratio between C; and g, [see eqn (10)]. For simplicity, it is assumed that both C; and
a; vary with respect to temperature by the same rule, so that «; becomes independent of
temperature.

(3) d,, f,,  are the saturated hardening parameter, hardening rate parameter and
material dependent constant related to the fading memory of hardening state, respectively.
d, may be related to the hardening parameter p which, in turn, is determined by eqns (21)-
(23).

(4) r, r, are the rates of additional cross-hardening and the hardening relaxation,
respectively.

(5) domax, p are the maximum additional cross-hardening that occurs at 4 = 1, and
parameter to coordinate nonproportional hardening results from various inelastic strain
paths.

(6) k, is the strain rate sensitive parameter.

(7) m, n’, by are the constants for the description of creep deformation.

These material parameters and constants can be identified by the following two steps :
first, plasticity processes with a constant strain rate are considered, so that the parameters
and constants in the items (1)—(5) and their temperature dependence (if different tem-
peratures are chosen for the tests) can be determined in the way discussed by Fan and Peng
(1991). In the second step, changing plastic strain rate and considering pure creep or
relaxation processes the constants and parameters in items (6) and (7) can be determined.
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4.2. Analysis for steady creep of aluminum, copper and nickel

In this part the steady creep states of some typical metals under widely scattered stress
levels will be analyzed by using the proposed model. In order to simplify the discussion,
n = 1[seeeqn (1)],f= 1and k = 1 are chosen in this part without losing generality. Letting
[see e.g. Freed and Walker (1993)]:

b(T) = by8(T) (26)

where

exp(—%T) . <T<T,
0

oT) = T (27)
exp[—%’)T, (ln(i>+l>:| 0<T<T,

T, and T, are transition temperature and melting temperature, respectively, the following
relation is obtained immediately from eqn (17)

-0z () a8)

1

in which R, = C,/a, and

I\ . (IsIY"  (dsl
Z (E)-—bo (R1> exp <n R1> (29)

is the expression of the steady-state Zener parameter from the proposed model.

The variation of the Zener parameters vs equivalent stress for aluminum, copper and
nickel calculated by using eqn (29) is shown in Fig. 2(a)-(c), respectively. The constants
involved are determined and listed in Table 1, in which the constants Q, and T, are directly
quoted from Freed and Walker (1993), but are not used in the calculation of z, the
parameter R, is obtained by the material constants related to the material strength, and b,,
mand »’ are determined by the corresponding experimental data (Freed and Walker, 1993).
It is seen that the proposed model can satisfactorily describe the experimental steady-state
creep rates (all the experimental results are indirectly quoted from Freed and Walker, 1993),
in a wide range of stress levels and for different metals.

4.3. Application to coupled creep and plasticity of 304 stainless steel subjected 10 non-steady
biaxial states of stress

The coupled plasticity and creep of 304 stainless steel subjected to non-steady biaxial
states of stress at 600°C is to be analyzed. By choosing n = 3 [see e.g. Valanis and Fan
(1983)] and

di(p) = 1+yp» (30)

for simplification, and noticing the deformation process is isothermal, the material constants
are determined as
G,E=54135GPa C,,; = 82x10%,2.4x10%,2.5x 10> MPa
%05 = 137x10%3.80x10%,42x 10" y,,7,,6,, 4 =1050,1.8,5
FisFas ooy, p = 4000,6,2.5,6 by, m,n" =2.8x107° 18,121
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Fig. 2. Stationary creep behavior: (a) aluminum; (b) copper ; (c) nickel.
Table 1. Steady-state creep constants
Constants Al Cu Ni
by(s™h) 3.86 < 10" 5.93x 10 8.94 x 10'?
R, (MPa) 84.92 138 265.4
m 3.79 3.97 4.19
n 34.39 38.36 24.95
Q, (J/mol) 1.4x10° 2.0x10° 29x10°
T, (K) 933 1356 1726

k, = 0.006 (given {, = 0.01s7").

In the biaxial stress and strain spaces the stress and strain vectors are defined as

~
6 =on +./3t,, &=c¢n +

—n,, (31)

v
ﬁ 2

where a, 1 stand for normal- and shear-stress components, ¢, y normal- and shear-strain
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components, respectively. n, and n, are a set of normalized unit vectors. The equivalent
stress and strain can then be expressed as

T 1,
G =|a|l = \/02+3r‘, E=lgl = ﬂz%—g}". (32)

The coupled creep and plasticity is analyzed by the incremental approach. For readers
to assemble the proposed model for code implementation and application more easily, the
numerical approach for the isothermal case, i.e. AT = 0 (but this approach can also be
applied to the case of AT # 0 without difficulty), is briefly introduced as follows:

Suppose the analysis for the nth increment of ioading has been finished and one obtains
S, 1, QU (r=1,2,3), B, z,, €, (.. €, p., A, £, and k,({). Given (n+ 1)th increment of
stress As, ., and the corresponding increment of time Az, |, one can have Az, |, immediately
by solving the following equation obtained by substituting eqns (6) and (9) into egn (8)
and using eqn (14) [see Murakami and Read (1987)]

f-z /'Zc2
<12C2 _Bn . BM)A25+I +2Bn : Asn+lAzn+l - (ASVI+1 :Asn+1 + nzkz A[5+l) = 0 (33)

then obtain A€}, , from egns (8) and (9), A{,,., from eqn (6),, AQY) | (r = 1,2, 3) from eqn
&)

eit+l = e:l+Aeiz—vl (34)

Ap,., can be determined with eqns (22). (23) and the condition of consistence ¢ = 0 [see
eqn (21)], and then d, and f; can be calculated by eqns (20) and (19), respectively. Mean-
while, making use of the given As,_ ; and the derived Ae},_ |, 4, d,, B, and f; can be calculated
by eqns (25), (24) and (19) sequentially, and the hardening function f can be obtained with
eqn (18). Then, by superimposing the increments onto the corresponding results after nth
increment of loading, one obtainss,_ ;. 7,, . Q" (r =1,2,3),B,, |, A, 1, foy and &, /(O
and then starts the next incremental loading. This unified approach is used in all the
following analyses. It is seen that the numerical process based on the proposed model for
the coupled plasticity and creep analysis is quite simple and direct.

Figures 3-9 show the responses of 304 stainless steel subjected to various loading
histories. The experimental results in Figs 3, 4 and 7 were used to determine the material
constants. In Fig. 3 the experimental equivalent stress and plastic strain relation (Murakami

160
1404 X
= 1204
s
gwo-
B 90
g 607 Om X &x Experimental
o
40 .
Fitting Curve
20+
0 T T T T —T T
6 006 01 015 02 025 03 035

Equivalent plastic strain (%)
Fig. 3. Equivalent stress vs equivalent strain obtained at the incipient loading in creep test.
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Equivalent creep strain (%)
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P Tl 1t 1

0 150 300 450 600 750
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Time (hr)

ol (MPa)

Fig. 5. Cyclically reversed torsion test.

et al., 1986) is shown with symbols and the fitting curve with solid line. The loading stress
process is stress-controlled with equivalent-stress rate of 7 MPa/s (in the following the same
rate is also used in the calculation when the state of stress changes).

The symbols in Fig. 4 show the experimental relation between the equivalent creep
strain and time (Murakami et al., 1986). It is seen that there is a long transient process
before steady-creep state is reached, both the accumulated creep strain and the creep rate
at steady-state greatly increases with the increase of applied stress. The solid lines are the
fitting curves, which well describe both the transition and the steady-state of the creep
under different stress level.

Figure 5 shows the variation of creep strain under cyclic reversed torsion. The dashed
curve corresponds to the experimental result (Murakami ef al., 1986). It is seen that the
amplitude of creep strain decreases in the first few cycles and then almost remains constant,
which may be attributed to material hardening. The solid curve denotes the calculated
result, which is in good agreement with the experiment.
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Fig. 8. Creep test under constant equivalent stress and random variation in principal stress direction
and interval of stress change.

The relation between creep strain and time under the stress history with irregularly
varying magnitude and interval is shown in Fig. 6. It is observed that the increase of creep
rate is more significant when the sign of stress is reversed (Murakami ez al., 1986). The
proposed model is able to describe the main features in this deformation process.

Figures 7-9 correspond to the responses of the material subjected to biaxial cyclic
plasticity and reversed creep. The stress path is shown in the upper part of each figure.
Each loading history consists of a loading from the origin to point 1 where the stress was
kept constant for Az, hours followed by a complete unloading, and then a subsequent
loading to point 2 where the stress was kept constant for Az, hours followed by a complete
unloading again, . . . . The time interval at each point in the corresponding stress diagram
are shown in Table 2.

Additional cross-hardening is observed (see Fig. 7) when the loading direction is
changed. The experimental result in this figure was used for the determination of the
material constants involved in additional cross-hardening. The correlation shows that the
proposed model can describe the behavior under biaxial cyclic plasticity and reversed creep.
The transient increase of creep strain and the succeeding creep recovery after the alternation
of tensile and shear stress can also be well described.

The responses of the material under random variation of multiaxial states of stress are
shown in Figs 8 and 9. In Fig. 8 the direction and the interval of stress change irregularly,
but the equivalent stress magnitudes keep constant. It is found that the increase of creep
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Fig. 9. Creep test under random variation in equivalent stress and principal stress direction, but
constant interval of stress change.

Table 2. Time interval for creep (hr)

Point 1 2 3 4 5 6 7 8 9 10 11
Fig. 7 96 96 96 96 96 96 96 96 96 96 —
Fig. 8 96 144 96 96 48 96 48 96 96 96 48
Fig. 9 96 96 96 96 96 96 96 96 96 96 —

rate due to the change of stress state is more significant after larger variation of stress
direction and this tendency is satisfactorily described by the proposed model.

The result in Fig. 9 corresponds to the stress history in which both the magnitude and
the direction of stress varies randomly, but the interval of stress variation remains constant.
It is seen that creep develops faster when either the variation of stress direction is larger or
the amplitude of stress increases. The comparison between experimental and calculated
results shows reasonable agreement.

5. CONCLUSIONS

A unified constitutive description for coupled plasticity and creep is derived from a
simple mechanical model and by introducing an appropriate definition of generalized time.
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The hardening function is multiplicatively separated into two hardening factors f; and f,.
corresponding, respectively, to cyclic hardening and additional cross hardening.

The steady-state creep rate of aluminum, copper and nickel subjected to widely dis-
tributed equivalent stresses were analyzed and the calculated result well correlates the
experimental observation. The proposed model was also applied to the description of the
plastic and creep behavior of 304 stainless steel subjected to nonsteady biaxial states of
stress, and the validity is demonstrated by the comparison between the calculated and the
experimental results (Murakami ez al., 1986).
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